Abstract

Recently, Telehealth connects patients to vital healthcare services via remote monitoring, wireless communications, videoconferencing, and electronic consults. By increasing access to specialists and physicians, telehealth assists in ensuring patients receive the proper care at the right time and right place. Teleophthalmology is a study of telemedicine that provides services for eye care using digital medical equipment and telecommunication technologies. Multimedia computing with Explainable Artificial Intelligence (XAI) for telehealth has the potential to revolutionize various aspects of our society, but several technical challenges should be resolved before this potential can be realized. Advances in artificial intelligence methods and tools reduce waste and wait times, provide service efficiency and better insights, and increase speed, the level of accuracy, and productivity in medicine and telehealth. Therefore, this study develops an XAI-enabled teleophthalmology for diabetic retinopathy grading and classification (XAITO-DRGC) model. The proposed XAITO-DRGC model utilizes OphthoAI IoMT headsets to enable remote monitoring of diabetic retinopathy (DR) disease. To accomplish this, the XAITO-DRGC model applies median filtering (MF) and contrast enhancement as a pre-processing step. In addition, the XAITO-DRGC model applies U-Net-based image segmentation and SqueezeNet-based feature extractor. Moreover, Archimedes optimization algorithm (AOA) with a bidirectional gated recurrent convolutional unit (BGRCU) is exploited for DR detection and classification. The experimental validation of the XAITO-DRGC method can be tested using a benchmark dataset and the outcomes are assessed under distinct prospects. Extensive comparison studies stated the enhancements of the XAITO-DRGC model over recent approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.