Abstract

The broad adoption of machine learning (ML)-based autonomous experiments (AEs) in material characterization and synthesis requires strategies development for understanding and intervention in the experimental workflow. Here, we introduce and realize a post-experimental analysis strategy for deep kernel learning-based autonomous scanning probe microscopy. This approach yields real-time and post-experimental indicators for the progression of an active learning process interacting with an experimental system. We further illustrate how this approach can be applied to human-in-the-loop AEs, where human operators make high-level decisions at high latencies setting the policies for AEs, and the ML algorithm performs low-level, fast decisions. The proposed approach is universal and can be extended to other techniques and applications such as combinatorial library analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.