Abstract
Landing a rescue helicopter in a wilderness environment, such as Yosemite National Park, requires suitable areas that are flat, devoid of tree canopy, and not within close proximity to other hazards. The objective of this study was to identify helicopter landing areas that are most likely to exist based on available geographic data using two GIScience methods. The first approach produced an expert model that was derived from predefined feature constraints based on existing knowledge of helicopter landing area requirements (weighted overlay algorithm). The second model is derived using a machine learning technique (maximum entropy algorithm, Maxent) that derives feature constraints from existing presence-only points; that is, geographic one-class data. Both models yielded similar output and successfully classified test coordinates, but Maxent was more efficient and required no user-defined weighting that is typically subject to human bias or disagreement. The pros and cons of each approach are discussed and the comparison reveals important considerations for a variety of future land suitability studies, including ecological niche modeling. The conclusion is that the two approaches complement each other. Overall, we produced an effective geographic information system product to support the identification of suitable landing areas in emergent rescue situations. To our knowledge, this is the first GIScience study focused on estimating the location of landing zones for a search-and-rescue application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.