Abstract

Deep learning-based systems can achieve a diagnostic performance comparable to physicians in a variety of medical use cases including the diagnosis of diabetic retinopathy. To be useful in clinical practice, it is necessary to have well calibrated measures of the uncertainty with which these systems report their decisions. However, deep neural networks (DNNs) are being often overconfident in their predictions, and are not amenable to a straightforward probabilistic treatment. Here, we describe an intuitive framework based on test-time data augmentation for quantifying the diagnostic uncertainty of a state-of-the-art DNN for diagnosing diabetic retinopathy. We show that the derived measure of uncertainty is well-calibrated and that experienced physicians likewise find cases with uncertain diagnosis difficult to evaluate. This paves the way for an integrated treatment of uncertainty in DNN-based diagnostic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.