Abstract

Tin-doped indium sulfide (In2S3:Sn) thin films with different Sn:In molar ratios (0% to 1% by mol in solution) have been deposited on glass substrates by a chemical spray pyrolysis method. The films were investigated by x-ray diffraction analysis, optical absorption, Raman, and photoluminescence spectroscopies, field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and atomic force microscopy. The structural properties revealed that the In2S3:Sn thin films had polycrystalline cubic structure with average crystallite size increasing from 16.3 nm to 25.5 nm. The surface morphology of the films was continuous and crack free. The average and root-mean-square roughness increased from 13.12 nm to 31.65 nm and from 16.14 nm to 39.39 nm, respectively, with increasing Sn:In molar ratio. Raman studies revealed the presence of vibration modes related to In2S3 phase, with no signature of secondary phases. The transmission coefficient was about 65% to 70% in the visible region and 70% to 90% in the near-infrared region. The optical bandgap values for allowed direct transitions in In2S3:Sn were found to lie in the range from 2.68 eV to 2.80 eV. The refractive index of the In2S3:Sn thin films decreased from 2.45 to 2.37 while the k values lay in the range from 0.02 to 0.25 for all wavelengths. Defect-related photoluminescence properties are also discussed. These In2S3:Sn films are promising candidates for use in optoelectronic and photovoltaic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call