Abstract

Tin-doped In2S3 films were grown by the chemical spray pyrolysis method using compressed air as a carrier gas. Tin is incorporated in the solution using SnCl4. Structural and optical properties of films were investigated by x-ray diffraction (XRD), absorption, Raman and photoluminescence spectroscopies. Field emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy were used to explore the surface morphology. The properties of In2S3 thin films are influenced by Sn doping. XRD studies revealed that the deposited films were polycrystalline in nature exhibiting cubic structure and oriented preferentially towards (111). According to FESEM, the surface morphology of the films was free of defects. Raman studies showed different peaks related to In2S3 phase and did not show any secondary phases of In-Sn and Sn-S. In2S3:Sn films exhibited transparency over 60–85% in the visible and infrared regions. The optical band gap was found to vary in the range 2.71–2.58 eV for direct transitions. The room temperature photoluminescence (PL) studies revealed two PL bands, centered at 529 nm (band A) and 725 nm (band B). From these results, one can conclude that our material can be used as transmittive windows in low-cost solar cells. The conductance and capacitance characterization at ambient temperature were also investigated and gave interesting physical properties for photovoltaic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call