Abstract

Experiments were carried out to evaluate the performances of a semiconductor laser pumped rubidium ( <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">87</sup> Rb) atomic clock. Two kinds of Rb gas cells were used and their performances were compared [gas cell A (natural rubidium ( <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">87</sup> Rb/ <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">85</sup> Rb = <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\frac{3}{7}</tex> ) and buffer gases) and gas cell B ( <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">87</sup> Rb and buffer gases)]. The highest microwave frequency stabilities were estimated as <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3.4 \times 10^{-12} \tau^{-1/2}</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2.7 \times 10^{-12} \tau^{-1/2}</tex> at the optimal gas cell temperatures of 60°C and 48°C for the gas cells <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</tex> , respectively (τ: integration time). The light shift, i.e., microwave frequency shift induced by laser light, was measured as -0.50 Hz/MHz and -0.11 Hz/MHz for the gas cells <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</tex> at their optimal operating conditions given above. As an improved experiment by utilizing high temporal coherence of the laser, a novel double resonance spectral line shape with a drastically narrower linewidth was demonstrated. A technique, similar to FM laser spectroscopy, was employed for this purpose by utilizing laser FM sidebands which are induced by microwave frequency modulation and nonlinear susceptibility of three-level <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">87</sup> Rb atoms. The minimum linewidth obtained was 20 Hz, which can be used as a sensitive frequency discriminator for an improved <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">87</sup> Rb atomic clock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call