Abstract
Due to the Joule heating effect induced by the use of an assisting electric field, glass wafer temperature is experimentally found to increase synchronically with the flow of current during the process of field-assisted ion diffusion. A theoretical analysis demonstrates that the amplitude of the glass wafer temperature increase is dictated by competition between two factors, heat generation and heat dissipation. Heat generation and heat dissipation both become stronger as the glass wafer temperature increases. Studies have shown that the Joule heating effect can influence the waveguide manufacturing process profoundly, including aspects such as the stability of ion diffusion, theoretical modeling of the ion-diffusion process, and waveguide depth uniformity over the glass wafer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have