Abstract

The aim of the paper is to create a model which enables to observe the mechanomyographic (MMG) wave generated during single motor unit contractions in a muscle, while the muscle is immersed in paraffin oil. The muscle model is described as a rheological membrane. Both the muscle and the medium models have been built by using Stiff-Finite-Element-Method (SFEM), which allows one to simulate the muscle surface displacement and the acoustic propagation of this effect in the oil. Such a modelling enables one to determine the impact of the rheological properties of the liquid environment on the shape of the MMG wave. In order to verify the model, the MMG signals and the contraction forces have been recorded in vivo from the medial gastrocnemius muscle of a rat. In these experiments single motor units were stimulated with various stimulation frequencies. A piezotransducer, immersed in paraffin oil, has been used to record the MMG signal recording. The signals recorded during individual twitches of the motor units have been used to estimate the parameters of the model. Subsequently, the model has been experimentally verified. The signals recorded in experiments during unfused and fused tetani have been compared with the simulated model responses in the analogous stimulation program. It has been observed that the MMG signals obtained with the proposed linear model have been consistent with the results of in vivo experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call