Abstract
A process has been developed by which mean velocity and concentration measurements can be used to determine optimal turbulent diffusivity values for an angled jet in cross-flow configuration. This configuration has applications in film cooling for gas turbine blades. The measurements, obtained by magnetic resonance imaging techniques, provide 3D time-averaged velocity and concentration fields. The mean velocity field is fed into a Reynolds-Averaged Advection Diffusion solver, which uses a turbulent diffusivity model to solve for the mean coolant concentration distribution. This distribution can be compared to the experimentally-obtained concentration field by means of an error metric that quantifies the difference between the computational and experimental concentration fields. By minimizing this error, an optimal value of the turbulent diffusivity can be determined. This optimized distribution is then compared to a RANS simulation to evaluate the relative contribution to error of the turbulent momentum flux model versus the turbulent scalar flux model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.