Abstract

The water quality model in water distribution systems adopted in EPANET and other commercial simulation programs assumed perfect mixing of solute at pipe junctions. However, imperfect solute mixing at pipe junctions at turbulent flow has been reported. Yet, the mixing under laminar and transitional flow is rarely reported and thus is the focus of experimental study reported here. The experimental results show that the average Reynolds number and the outflows Reynolds number ratio controls degrees of the mixing at the pipe junctions. For cross junctions, the mixing degree is a function of the average Reynolds number in three regions; each has different mixing mechanisms and mathematical relationship. For double‐Tee junctions, the dimensionless connecting pipe length plays a more important role than the Reynolds number ratios of outflows and average Reynolds number on mixing because a longer connecting pipe length gives more mixing space and time for the water flow mixing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.