Abstract

The authors have demonstrated experimental verification of the stress compensation feature for the fast thickness shear mode of vibration of stress-compensated for B-mode and temperature-compensated for C-mode (SBTC)-cut quartz resonators. For the resonator design used in the cylindrical probe structure, the motional resistance for the B-mode of vibration was approximately 12% of that of the C-mode. The relatively large motional resistance for the C-mode of vibration of the SBTC-cut was found to be largely due to the lower piezoelectric coupling for the thickness excitation of this mode. In addition the proximity of the third overtone of the A-mode to the fifth overtone of the C-mode also contributed to the increase in the motional resistance. The authors have obtained experimental data on the temperature dependence of the planar stress coefficient and pressure dependence of the frequency-temperature characteristic for both the thickness-shear modes of the SBTC-cut. It is noted that such a doubly rotated cut can have applications in the design of either stable frequency sources or sensors for pressure and temperature measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call