Abstract

Microgrids are used in many applications to power critical loads that have significant consequences if they lose power. Losing power to medical centers, water treatment plants, data centers, national defense installations, airports, and other critical infrastructure can cause loss of money and loss of life. Although such microgrids are generally reliable at providing stable power, their resilience to disruption can be poor. Common interruptions include natural disasters like earthquakes, and man-made causes such as cyber or physical attacks. Previous research into microgrid resilience evaluation efforts centered on theoretical modeling of total electrical microgrid loading, critical electrical load prioritization, assumed capacity of renewable energy sources and their associated energy storage systems, and assumed availability of emergency generators. This research assesses the validity of two microgrid resilience models developed for analyzing islanded microgrids by using experimental data from a scaled microgrid system. A national defense context is provided to motivate the work and align with the intended purpose two microgrid resilience models. The results of this research validate that the simulation models are valid to use in some situations, and highlight some areas for further model improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call