Abstract
A computational fluid dynamic (CFD) model for tubes in a phase change thermal energy storage system has been developed and validated with experimental results. The heat transfer fluid (HTF) flows in tubes which are configured in a unique arrangement during the charging and discharging processes. Water was used as the phase change material (PCM) which was contained in a cylindrical tank with four tubes coiled inside it. Experiments were conducted for both freezing and melting processes. A three-dimensional CFD model using Ansys code was developed and validated with experimental results. This model endeavoured to describe both the freezing and melting processes of the PCM. The inlet and outlet HTF temperatures as well as nine temperature locations in the PCM were compared with the CFD results. The average effectiveness as well as the duration of the phase change process of each experimental point was also compared with results from the CFD. From this study, it was concluded that the CFD model developed can accurately predict the behaviour of the thermal storage system during charging and discharging. The paper gives details of the CFD model and compares results from the model and experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.