Abstract

In recent years, the feasibility of quantum key distribution (QKD) in a water channel has been verified by theory and experiment. Here, we present an experimental investigation of QKD and decoy-state QKD based on the BB84 protocol. The experiment was carried out in a 10 m water tank. The attenuation coefficient of tap water is 0.08/m, which is close to Jerlov Type II seawater. We measured the probability-of-detection matrix of polarization states, and the average fidelity of the four polarization states is up to 98.39%. For the 10 m underwater QKD experiment, 20 MHz optical pulses are generated by modulating the laser diode (LD) and attenuated to an average of 0.1 photons per pulse. The security key rate can reach 563.41 kbits/s and the quantum bit error rate (QBER) is 0.36%. Two decoy states (one of which is the vacuum state) was used in the 10 m underwater decoy-state QKD experiment, and the average QBER of signal state is 0.95%, the security key rate reaches 711.29 kbits/s. According to the parameters of the decoy-state experiment, the maximum secure transmission distance of the underwater decoy-state QKD is predicted to be 19.2 m, while it can be increased to 237.1 m in Jerlov Type I seawater with a lower dark count single photon detector (SPD).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call