Abstract

This paper investigated the mechanical properties of GQ-6 subjected to a tremendous amount of uniaxial tests. Such material is a new kind of ultra high molecular weight polyethylene fiber and aimed to be adopted in stratospheric airship. To begin with, mono-uniaxial tensile tests were conducted. The cycling-uniaxial tensile experiments were then carried out on the basis of the mono-uniaxial tensile tests data. Finally, performances of welding seams were thoroughly investigated with forty welding specimens. Results of mono-uniaxial tensile tests revealed that such woven fabric possesses high tensile strength and low elongation ratio at break. Meanwhile, the stress–strain behaviors were fitted by the Ogden model and a good agreement between such model and experimental data was obtained. Influences of the uniaxial loading cycle on such woven stiffness were discussed and the elastic moduli were defined with a standard hysteresis loop. For the welding tests, four types of overlapping welding failures were discovered. Compared with intact specimens, an appropriate welding width of 60 mm and an approximate 15% discount of the ultimate tensile stress on the intact textile were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.