Abstract

In this paper, experimental investigations are carried out to study the thermal performance of metallic foams impregnated with phase change material (PCM) based heat sinks for thermal management of electronics. Herein, RT-35HC with melting point 34–36 °C is chosen as PCM and copper foam1 (95% porosity), copper foam2 (97% porosity) and Iron-Nickel foam (97% porosity) are used as thermal conductivity enhancer. Various configurations of the heat sink are investigated for 5400 s each for charging and discharging processes under heat flux 0.8–2.4 kW/m2 for PCM volume fractions 0.0, 0.6, 0.7 and 0.8. Results revealed that copper foam-based heat sink showed 5–6 °C less base temperature as compared to that of Iron-Nickel foam. While investigating the effect of foam porosity, copper foam with lower porosity (95%) has shown 11% less base temperature at the end of the charging cycle. It was also noticed that the maximum thermal conductivity enhancement of PCM was found to be 34 times for 95% porosity copper foam with the latent heat reduction of 37%. Copper foam1-PCM composite posed the maximum enhancement in operation time of heat sink 7.9 times more as compared to that of the empty aluminum heat sink. Copper foam -PCM composite with 95% porosity of foam with 0.8 vol fraction of PCM is best recommended configuration for the present experimental study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call