Abstract

Incomplete data indicate that coal gangue is accumulated in China, with over 2000 gangue hills covering an area exceeding 200,000 mu and an annual growth rate surpassing 800 million tons. This accumulation not only signifies a substantial waste of resources but also poses a significant danger to the environment. Utilizing coal gangue as an aggregate in the production of coal-gangue concrete offers an effective avenue for coal-gangue recycling. However, compared with ordinary concrete, the strength and ductility of coal-gangue concrete require enhancement. Due to coal-gangue concrete having higher brittleness and lower deformation resistance than ordinary concrete, basalt fibre (BF) is a green, high-performance fibre that exhibits excellent bonding properties with cement-based materials, and polypropylene fibre (PF) is a flexible fibre with high deformability; thus, we determine if adding BF and PF to coal-gangue concrete can enhance its ductility and strength. In this paper, the stress–strain curve trends of different hybrid basalt–polypropylene fibre-reinforced coal-gangue concrete (HBPRGC) specimens under uniaxial compression are studied when the matrix strengths are C20 and C30. The effects of BF and PF on the mechanical and energy conversion behaviours of coal-gangue concrete are analysed. The results show that the ductile deformation of coal-gangue concrete can be markedly enhanced at a 0.1% hybrid-fibre volume content; HBPRGC-20-0.1 and HBPRGC-30-0.1 have elevations of 53.66% and 51.45% in total strain energy and 54.11% and 50% in dissipative energy, respectively. And HBPRGC-20-0.2 and HBPRGC-30-0.2 have elevations of 31.95% and 30.32% in total strain energy and −3.46% and 28.71% in dissipative energy, respectively. With hybrid-fibre volume content increased, the elastic modulus, the total strain energy, and the dissipative energy all show a downward trend. Therefore, 0.1% seems to be the optimum hybrid-fibre volume content for well-enhancing the ductility and strength of coal-gangue concrete. Finally, the damage evolution and deformation trends of coal-gangue concrete doped with fibre under uniaxial action are studied theoretically, and the constitutive model and damage evolution equation of HBPRGC are established based on Weibull theory The model and the equation are in good agreement with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call