Abstract

The extensive exploitation of metal mines has resulted in the generation of vast quantities of fine tailings, posing significant environmental challenges such as surface subsidence and deposition. The conventional cemented backfill technology, which has been widely used for tailings processing, requires substantial cement consumption and thus leads to escalated economic costs and carbon emissions. In this paper, we propose a pollution-free alternative, Microbial-Induced Calcite Precipitation (MICP) technology, as a promising solution for sustainable mine filling. The study employs microscopic and macroscopic analysis techniques, including laser diffraction particle size (LDPS) analysis, scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), to investigate the inner structure and mechanical properties of the microbial cemented fine tailing backfill (MCFB). Key parameters such as unconfined compressive strength (UCS), CaCO3 content and porosity are examined, with a focus on the effects of bacterial solution dosage and curing time. The results reveal that the MICP-processed fine tailings exhibit an increase in particle size by approximately 292.1% compared to their original size. Furthermore, MCFB specimens demonstrates significantly enhanced UCS and decreasing porosity under comparable conditions, surpassing the performance of traditional cemented fine tailings backfill (CFB) specimens. Microscopic analysis highlights that the strength development in MCFB predominantly arises from the cementation effects of MICP-induced CaCO3, primarily in the form of calcite, rather than the cementation effects resulting from hydration products (C-S-H) in conventional CFB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.