Abstract

A novel technique that couples microbially induced calcite precipitation (MICP) and calcium carbide residue (CCR) is proposed for immobilizing Cd2+ in contaminated soil. The properties and mechanism of CCR-enhanced MICP were investigated through a series of experimental analyses considering factors such as heavy metal concentration, curing time, and the effect of Ca2+. The unconfined compressive strength (UCS) increased with increasing curing time and reached a maximum value at 28 d, and the leaching concentration of Cd2+ decreased and tended to level off with increasing curing time. The addition of CCR enhanced the immobilization performance of Cd2+ through the MICP method, resulting in UCSs that were 3.8–4.2 times those of samples without CCR and leaching concentrations of Cd2+ that were 38.9–69.2% lower at a curing time of 28 d. The addition of Ca2+ to cementation solutions further improved the immobilization effectiveness, resulting in the UCSs of the samples increasing by 18.7–49.8% and the leaching concentrations of Cd2+ decreasing by 11–40% CaCO3 and its hydration products can immobilize Cd2+ through coprecipitation, reducing its toxicity by converting weak acid-extractable cadmium into residual cadmium. Consequently, Sporosarcina pasteurii combined with CCR improved the UCS of the treated contaminated soil and greatly decreased cadmium migration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.