Abstract

Accurate determination of power losses in semiconductor devices is important for optimal design and reliable operation of a power converter. The switching loss is an important component of the total device loss in an insulated-gate bipolar transistor (IGBT) in a voltage source inverter. The objective here is to study experimentally the influence of junction temperature on the turn-on switching energy loss Eon and turn-off switching energy loss Eoff. More specifically Eon and Eoff are both related to device current Ic; the influence of junction temperature on the relationship between Eon and Ic and that between Eoff and Ic is studied. As the operating environmental conditions and load conditions of power converter vary widely, a wide range of junction temperatures between −35°C and +125°C is considered here. The experimental data enable precise determination of the switching loss in each device in a high-power converter at any practical operating condition. This leads to precise estimation of total device loss and optimal thermal design of the converter. This further helps off-line and/or on-line estimation of device junction temperatures required for study of thermal cycles and reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call