Abstract
An investigation was carried out to study the effect of changes in oil quality on its tribological performance using a tuning fork technology based oil sensor. In this research, a tribological testing system was commissioned, to simulate the piston ring-cylinder liner sliding contact, and to measure the lubricant condition in real-time using an oil sensor. Tribological contact between cylinder liners and piston rings in marine engines is the most affected region due to excessive thermo-mechanical stresses. At top dead centre, the effect of such stresses is at a maximum where piston-sliding speed is lowest, while the temperature is high due to fuel combustion, and radial load behind the piston rings compressing against the cylinder liner surface is at a maximum due to gas pressure and the compression fit of piston rings within the cylinder liner. At bottom dead centre, this effect is less severe due to a reduction in temperature and gas pressure on the piston rings, as the piston is positioned away from the combustion chamber. These two regions experience boundary lubrication conditions, where anti-wear and anti-friction additives are responsible for forming a protective lubricious film on sliding surfaces. At mid-stroke, piston-sliding speed is maximum, therefore, a full hydrodynamic film is formed in this region separating the piston rings and cylinder liner. The formation of oil film depends upon, the physical properties of oil (such as viscosity and density) under hydrodynamic lubrication conditions, and the oil chemistry (such as presence of additives in oil) under mixed or boundary lubrication conditions. Lubricants in marine engines undergo intense degradation in quality due to contamination with wear particles, water, soot, un-burnt fuel, coolant, and additives depletion. Such degradation of lubricants leads to a reduction in their capability to form a minimum thickness of oil film between two moving engine components to avoid direct metal-to-metal contact, which may cause wear. Therefore, monitoring the condition of marine engine lubricants is vital in order to predict any significant change in its quality. The results obtained from tribology testing and oil condition monitoring in the current research showed a good correlation and are useful to understand the performance of lubricants for piston ring-liner contacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.