Abstract
This paper aims to deeply explore the influence of different inclination conditions on the heat transfer characteristics and broaden the application scene of a pulsating heat pipe. A test device for the heat transfer performance of a pulsating heat pipe under different inclination angles is designed and built. Under the condition of 70% liquid filling rate, ethanol and HFE-7100 are selected to carry out the experimental test with heating power of 40–140 W and dimensionless thermal difference of 0–0.56. The heat transfer performance, the temperature in the evaporation section and the internal pressure fluctuation of the pulsating heat pipe were experimentally studied. The results show that under the condition of uniform heat flux, for ethanol working medium, when the pulsating heat pipe is heated at 40 W, the operating thermal resistance varies significantly with different installation angles. At this time, the operating thermal resistance of a pulsating heat pipe with installation angles of 45°, 70°, 90° and D90° is 1.38 °C/W, 1.60 °C/W, 1.73 °C/W and 2.07 °C/W, respectively. With the increase in installation angle, the operating thermal resistance also increases gradually, reaching the maximum at 90°. At low heating power, the effect of the installation angle on the ethanol working medium is significantly greater than that of HFE-7100 working medium. The HFE-7100 working medium showed lower operating thermal resistance at low heating power, but with the increase in heating power, the operating thermal resistance of the two working medium gradually approached a 70% filling rate. Under non-uniform heating conditions, when HFE-7100 is used as a working fluid, the operating thermal resistance of a pulsating heat pipe under different heating power was lower than that of the ethanol working medium. The operating thermal resistance is less affected by the installation angle, and the overall heat transfer performance is better. The phenomenon in which the ethanol working medium is obviously affected by the installation angle can be improved by non-uniform heating conditions. For ethanol working medium, when the dimensionless heat difference reaches 0.33 under the condition of a 45° installation angle, the average temperature fluctuation in the evaporation section appears gentle. At this installation angle, the internal working medium of the four elbow pulsating heat pipe devices used in this research more easily forms a cycle in the pipe than the 90° installation angle.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have