Abstract
Through the recovery and reuse of agricultural waste, the extraction and consumption of natural aggregates can be reduced to realize the sustainable development of the construction industry. Therefore, this paper utilizes the inexpensive, surplus, clean, and environmentally friendly waste agricultural material walnut shell to partially replace the fine aggregates in mortar to prepare environmentally friendly mortar. Considering the decrease in mortar performance after mixing walnut shells, basalt fibers of different lengths (3 mm, 6 mm, and 9 mm) and different dosages (0.1%, 0.2%, and 0.3%) were mixed in the mortar. The reinforcing effect of basalt fibers on walnut shell mortar was investigated by mechanical property tests, impact resistance tests, and freeze–thaw cycle tests. The damage prediction model was established based on the Weibull model and gray model (GM (1,1) model), and the model accuracy was analyzed. The experimental results showed that after adding basalt fibers, the compressive strength, split tensile strength, and flexural strength of the specimens with a length of 6 mm and a doping amount of 0.2% increased by 13.98%, 48.15%, and 43.75%, respectively, and the fibers effectively improved the defects inside the walnut shell mortar. The R²s in the Weibull model were greater than 87.38%, and the average relative error between the predicted life of the impacts and the measured values was greater than 87.38%. The average relative errors in the GM (1,1) model ranged from 0.81% to 2.19%, and the accuracy analyses were all of the first order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.