Abstract

Plastic wastes are a major hazard for the environment and their use in the construction industry is increasing day by day. The major drawback of the use of plastic in concrete is an exceptional reduction in strength and workability. This research work explores the effect of sand coating on two types of recycled plastic aggregates, high-density polyethylene (HDPE) and electronic-wastes (E-wastes), as partial replacement of natural aggregates. The replacement ranged from 0% to 30% along with the use of super plasticizer SP-675 and wet lock sealant. Both recycled plastic aggregates are crushed, melted, and ground to convert them into aggregates of 20 mm size. The workability of concrete containing uncoated recycled plastic aggregates (HDPE and electronic wastes), SP-675, and wet lock sealant has been found to be higher than controlled concrete samples with 0% recycled aggregates. Compressive strength, split tensile strength, and flexural strength of such type of concrete is lower than the controlled concrete samples due to the weak bond between the plastic aggregates and Ordinary Portland Cement. After applying the sand coating to improve bonding, the workability is reduced compared to uncoated samples whereas the compressive strength, split tensile strength and flexural strength of the sand coated plastic aggregate concrete is higher than uncoated plastic aggregate concrete. There is a significant increase in workability of concrete after the addition of SP-675 when added as 2% by weight of cement. The wet lock sealant positively affects the strength properties of concrete. It is recommended that the durability of concrete containing uncoated and sand coated recycled plastic aggregates be further explored in future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call