Abstract

Intracranial hemorrhage (ICH) is the bleeding induced by parenchyma vascular rupture. In this paper, four novel coils (a contralateral hemisphere cancellation coil, a coaxial coil, a double-end exciting coil, and a Helmholtz coil) were developed to detect the volume change of ICH with the magnetic induction phase shift (MIPS) technique. Both numerical studies on an ICH model and animal experiments on rabbits' hemorrhage model were performed with four coils. Twenty rabbits were measured for each coil. The animal results were consistent with the simulation and the theoretical analysis for each coil. The MIPS first declined and then increased with increasing injection volume, indicating the existence of a turning point. The MRI images showed that the average CSF decreased in the heads of five rabbits after blood injection was approximately equal to the average injection volume corresponding to the turning point of all animals. Thus, we concluded that when the MIPS turning point occurs, the CSF is already exhausted and the compensatory stage has ended. The results show that the MIPS technique has the potential to detect ICH growth and MIPS changes with increasing blood in a regular way. The turning point is expected to provide an early warning for ICH growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.