Abstract
A double strut cable dome structural system was presented to improve the mechanical behaviour of a cable dome. This structure has good stability and is convenient to construct. To investigate its construction method and static performance, a structural model with a 6-m diameter was designed. From the nodal equilibrium equation, the calculation formulas for the prestress distribution with self-weight considered were deduced. Two types of construction methods, namely, assembling at high altitude and integral lifting, were adopted in the shape-forming process of the double strut cable dome, monitoring the internal force of the cable-strut components and the structural deformation. According to loading tests under full-span load and half-span load, the static behaviour of the structure was obtained and compared with the results from finite element analysis. Using the formulas deduced in this paper, the actual initial prestress considering self-weight for a double strut cable dome can be obtained accurately. This structure was suitable for tensioning the outer diagonal cables to apply prestress. Combined with the construction method for integral lifting, the difficulty and workload of the construction process can clearly be reduced, making the structure favourable for engineering application. Under an external load, the internal force of the ridge cables and inner diagonal cables decreases and the internal force of the other components increases. The results of the model tests were in good agreement with those of the finite element analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have