Abstract

In this study, experiments of high-speed face milling of A6061 aluminum alloy with a carbide insert milling cutter under dry cutting conditions were conducted. The contact length between tool and chip, the workpiece vibration amplitude, and the arithmetic average surface roughness were measured under varying cutting conditions (cutting speed, feed rate, and depth of cut). The characteristics of chip morphology were observed using scanning electron microscope. Experimental results showed that the increasing cutting speed reduced the tool–chip contact length, the workpiece vibration, and the surface roughness. The tool–chip contact length, the workpiece vibration, and the surface roughness were all increased with increasing cutting depth and feed rate. The results of chip morphology showed that the chips with serrated form were generated under high-speed cutting conditions. Moreover, scratch lines, plastic deformation cavities, and local molten chip material were observed on the slide chip surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call