Abstract

Oblique water entry of marine structure involves complex hydrodynamics phenomena including splash formation, asymmetrical cavity and pinch-off that have been observed in previous systematic experiments. However, very few studies focus on such phenomena induced by oblique impact of object in a two-layer liquid system. In this paper, we present an experimental investigation of oblique entry of a sphere into a deep pool of water within a layer of highly viscous dimethicone floating on the water. In the experiment, a high speed digital camera is established to obtain the instantaneous cavity and motion trajectories for both qualitative and quantitative analysis. The results show that the upper-layer viscous liquid introduces a significant change in the splash formation mechanism and the special behaviors are characterized by stratified splash and corresponding asymmetrical shrinkage structures. Meanwhile, it is observed that the difference in splash characteristics caused by different thicknesses of viscous fluid layer is obvious, and the pinch-off depth is independent of the thickness value which studied in our experiments. In addition, it is found that increasing the horizontal impact velocity will cause a delay in the splash closure and the vertical displacement of the sphere during the dimethicone-water enter process is independent of the horizontal impact velocity. Hydrodynamic force model is established to explain the trajectory of the sphere. Furthermore, the splash angle, pinch-off depth, pinch-off time and the water entry depth at pinch-off locations and the corresponding change tendency are obtained qualitatively and quantitatively. These results indicate that the dimethicone layer is critical in determining the cavity dynamics, especially splash formation and pinch-off characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call