Abstract

<div>The sinking and trimming of the hull in the channel would directly affect the handling and navigation safety of the ship. In view of the ship sinking, a series of empirical formulas to estimate the subsidence have been put forward for vessel in spacious shallow water areas. However, most of the equations are based on seagoing vessels. They are not suitable for inland ships with small scales, shallow drafts, and narrow navigation width. Till now, research on ship squat in intermediate channel has not yielded more practical results. Here, a generalized physical model is used to study the sinking of 500t class ships in restricted intermediate channel under different channel widths, water depths, and speeds. The main factors affecting the squat are analyzed, the empirical relation is compared with the measured squat. The <i>Barrass</i> equation is modified, and the calculation relation of the settlement suitable for inland river ships is proposed. The correlation coefficient <i>R</i><sup>2</sup> of the modified equation is 0.818, the standard error is 0.046, and the maximum error is 0.14 m, which can be used as a reference for inland waterway design research.</div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call