Abstract
SummaryThe two‐way hollow core precast panel (TWHCPP) exhibits good seismic performance. In this study, the shear behavior of the TWHCPP shear wall with vertical connections was investigated. Specifically, five shear wall specimens, which comprised one cast‐in‐place shear wall, one TWHCPP shear wall without vertical connections, and three TWHCPP shear walls with vertical connections, were investigated experimentally. The TWHCPP shear walls were also modeled through numerical simulation. The experimental and numerical results indicate that the TWHCPP shear wall specimens with vertical connections exhibit monolithic load‐bearing mechanisms before the peak point, which is similar to the cast‐in‐place shear wall specimen. When the peak point of the TWHCPP shear wall specimen was attained, vertical slits were formed in the vertical connection and major vertical crack regions, which divided the shear wall panel into multiple vertical concrete straps. Subsequently, the load‐bearing mechanism of the TWHCPP shear wall transformed to multiple vertical concrete straps working cooperatively with transverse reinforcements. Therefore, the brittle diagonal tension failure mode could be avoided, and a good hysteretic performance could be achieved. The outcomes of this study are expected to provide a useful reference for the application of the TWHCPP shear wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Structural Design of Tall and Special Buildings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.