Abstract

In order to investigate the effects of non-thermal plasma (NTP) on diesel particulate matter (PM), an engine test bench was built up. An engine exhaust particle sizer (EEPS) was introduced to analyze the emission concentration and size distribution of PM and a thermo-gravimetric analyzer was used to analyze the effects of NTP on the composition of the particulate matter in the exhaust gas. The results show that the size distribution interval of the particle mass concentration falls behind that of the quantity concentration under various loads. When the diesel engine operating speed is 2400 rpm and the load is 25%, after NTP, the proportions of the nucleation mode particles and the accumulative mode particles exhibit a small fluctuation while the proportion of ultrafine particles decreases by 10% due to their large quantity concentration. Under the dual effect of DPF and NTP, the particle quantity concentration decreases by 98%. In order to investigate the effect of NTP on the composition of the PM, a thermo-gravimetric analysis of the particles obtained before and after NTP was carried out. The results show that the proportion of volatile matter falls by 16.05% and solid carbon accounts for an increase of 7.29%. NTP has the ability to improve reduction activity of particles and make particles easier to be oxidized at a lower temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call