Abstract

The propagation properties of spherically aberrated beams through atmospheric turbulence are studied experimentally, where the spherically aberrated beams are generated by a spatial light modulator (SLM), and the atmospheric turbulence is simulated by the rotary random phase plate. It is shown that both for the positive and negative-spherical aberrated beams, the intensity distribution is multi-annular in free space, but it becomes a Gaussian-like profile in turbulence. The positive spherical aberration results in a beam spreading, while the negative spherical aberration causes a beam focusing. The larger the positive spherical aberration, the worse the power in the bucket. However, the dependence of the negative spherical aberration on the power in the bucket is non-monotonic. In particular, the effect of spherical aberration on beam spreading decreases due to turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call