Abstract
Abstract: In any power transmission system, insulators are essential for a reliable electrical power supply. The Efficiency of insulators will be decided by their electrical and mechanical properties. Recently in many of the power transmission systems, the conventional porcelain insulators are being replaced by polymeric insulators due to various advantages in their properties. Polymeric insulators have been increasingly popular in recent years as a result of their superior performance in contaminated environments due to their hydrophobic nature. However, research is still being carried out on Polymeric material with regards to ageing condition and feasibility for large scale utilization. Ageing of insulation is due to Environmental, Tracking and Erosion conditions. Ageing leads to immature failures and uncertainty in the performance of the insulators. The constituent materials and their properties have a significant impact on the performance of polymeric insulators. There is a strong need to look into newer filler materials which can be added to the existing polymeric base materials to constitute a composite. Keeping this in mind, in the proposed research uses Silicone rubber as base polymeric material and along with that additives are added to arrive at three different composites. A new filler material will be added to the base material forming a new composite. All these HTV Silicone rubber based composites are then tested the recovery of hydrophobicity, dielectric strength, hardness, specific gravity, tensile strength , ultimate elongation ,tear strength properties based on ASTM standards. Further, Inclined plane Tracking and Erosion studies are also conducted on the polymeric test samples for 6 hours to evaluate the SiR housing material suitability for outdoor insulator applications by subjecting them to AC high voltages under laboratory conditions as per IEC 60587 standards. Keywords: Recovery of hydrophobicity, dielectric strength, hardness, specific gravity, tensile strength, ultimate elongation, tear strength, inclined plane tracking and erosion, ageing, filler material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.