Abstract

In recent years, innovative materials such as carbon nanotube composites are finding growing interest in several industrial sectors, from sports and leisure to electronics, automotive, aircraft, and defence. The reinforcing influence of the carbon nanotube is of prime interest. However, technological issues concerning the production methods and the manufacturing processes of carbon nanotube components limit the industrial application of this innovative and interesting material, especially whether small features are required. For this reason, manufacturing strategy involving new production technologies must be designed and developed. This paper studies the challenges of a manufacturing chain based on two manufacturing processes: injection moulding and micro milling. A case study based on these innovative processes is reported and discussed. The propagation chain effect and the influence of each considered process parameter on cutting force and geometrical accuracy of the features (the key characteristics of the process chain) were assessed by means of statistical analysis of variance (ANOVA). The ANOVA analysis demonstrated that cutting forces in micro milling are mainly influenced by the material and percentage of carbon nanotubes, while the main parameter influencing the geometrical accuracy of micro features is the matrix material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.