Abstract

In order to evaluate the efficacy of low intensity ultrasound and tissue engineering technique to repair segmental bone defects, the rabbit models of 1.5-cm long rabbit radial segmental osteoperiosteum defects were established and randomly divided into 2 groups. All defects were implanted with the composite of calcium phosphate cement and bone mesenchymal stem cells, and additionally those in experimental group were subjected to low intensity ultrasound exposure, while those in control group to sham exposure. The animals were killed on the postoperative week 4, 8 and 12 respectively, and specimens were harvested. By using radiography and the methods of biomechanics, histomorphology and bone density detection, new bone formation and material degradation were observed. The results showed that with the prolongation of time after operation, serum alkaline phosphatase (AKP) levels in both groups were gradually increased, especially in experimental group, reached the peak at 6th week (experimental group: 1.26 mmol/L; control group: 0.58 mmol/L), suggesting the new bone formation in both two group, but the amount of new bone formation was greater and bone repairing capacity stronger in experimental group than in control group. On the 4th week in experimental group, chondrocytes differentiated into woven bone, and on the 12th week, remodeling of new lamellar bone and absorption of the composite material were observed. The mechanical strength of composite material and new born density in experimental group were significantly higher than in control group, indicating that low intensity ultrasound could not only effectively increase the formation of new bone, but also accelerate the calcification of new bone. It was concluded that low intensity ultrasound could evidently accelerate the healing of bone defects repaired by bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.