Abstract

Large-diameter open-ended pipe piles typically refer to pipe piles with diameters larger than 0.91 m. These piles, when properly designed and constructed, could provide high load-carrying capacity against axial loading, uplift, and overturning in the offshore environment. The current American Association of State Highway and Transportation Officials (AASHTO) specification for pipe piles is based on the database collected from piles with diameters less than 0.61 m and is, therefore, insufficient for the design of large-diameter open-ended pipe piles. This paper introduces an experimental program to investigate the static load-carrying behavior of open-ended pipe piles. Two types of restriction plates, i.e., one-hole plate and four-hole plate, were designed and installed inside the pipe to study their influence on the loading bearing behavior. Beside the laboratory-scale pile experiments, the testing program was augmented with geotechnical centrifuge experiments, which upscale the dimensions of model piles close to the size used at the field scale. The combined laboratory and geotechnical centrifuge experiments help to analyze the load-carrying behavior of pipe piles with different pile diameters, types of restriction plate, and embedment depths. The experimental results indicate that the formation of a soil plug is crucial to mobilize the bearing capacity of pipe piles. The restriction plate helps to form the soil plugging, which leads to a higher end bearing capacity. The selection of types of restriction plate should be determined on a case-by-case basis with considerations of mechanical performance and pile drivability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call