Abstract

The experimental study on aramid fiber-reinforced composites (AFRP) was carried out. The milling experiments of AFRP were carried out from different fiber orientations. The changes in surface quality, fiber section, and chip shape in mPIC1195147illing under different fiber orientations were studied, and the action law of the blade and tooth was analyzed from the micro perspective. The response surface are used to analyze the cutting force. The mathematical model is established to predict the minimum cutting force. The variance analysis method is used to analyze the influencing factors and their weights of cutting force. The research shows that the cutting force is the smallest when the fiber orientation angle is 0° or 90°, the milling surface quality is good, and the chips are primarily powdery. The cutting force is the largest when the fiber orientation angle is 45° and the milling surface quality is poor. The chips are mainly flocculent. At this angle, the cutting force is affected by three factors, and the interaction has the most significant proportion. When the fiber orientation angle is 30° or 60°, the cutting force, the fiber cross-section, and the surface quality are between the former two, and most of the chips are mixed chips (powdery and flocculent). The evolution and distribution law of burr is obtained. During AFRP milling, the milling surface is always sheared on one side and accompanied by extrusion. The fibers are sheared and broken, the surface burrs are few, the side is stretched, the fibers are stretched and broken, and the surface burrs are many. The action rule of the cutting tool on transverse and longitudinal fibers is summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.