Abstract

Machined surface quality is the deciding factor when evaluating the machinability of CFRP. This present work concerns the influence of fiber orientation on the machined surface quality of the machined surface in terms of surface morphology and surface roughness during milling of unidirectional T800/X850 CFRP laminates. Four group milling tests are conducted under the fiber orientation angle of 0°, 45°, 90° and 135°, respectively. For the fiber orientation angle of 0°, the machined defects are mainly fiber pull-out and fiber brittle fracture owing to interfacial debonding between the fibers and matrix resin. For the fiber orientation angle of 45°, the machined defects are mainly resin cavities and the surface morphology is rough and presents wavy fractures. For the fiber orientation angle of 90°, smooth or neat surface is observed except for the surface as the cutting tool cutting in the workpiece on which severe cracks are observed. For the fiber orientation angle of 135°, the surface is smooth with less fibers pull-out. Evaluation profile and surface roughness of the machined surfaces were measured as well. Dramatically fluctuate of the evaluation profile is observed for the fiber orientation angle of 45° with a high surface roughness Ra. Verification tests were also conducted on the multidirectional CFRP (cross-ply) laminates. It is indicated that the presence of the fiber orientation angle of 45° is the main factor leading to the decline of the machined surface quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.