Abstract

AbstractThe crack coalescence of rocks significantly affects the stability of rock engineering, and extensive studies have been performed on preflawed rock specimens without thermal treatment. However, the fracturing behaviour of preflawed specimens after thermal treatment has not been investigated comprehensively. In this study, three‐flawed sandstone specimens with different flaw inclinations after high‐temperature treatments were tested under uniaxial compression. Photographic, acoustic emission and digital image correlation techniques were used to investigate the crack initiation, propagation and coalescence behaviour. Experimental results show that the peak strength, elastic modulus and peak strain of the three‐flawed specimens were lower than those of intact specimens and that they gradually recovered with increasing flaw angle. The peak strength and elastic modulus first increased and then decreased, whereas the peak strain increased with temperature. Noncoalescence, indirect coalescence and direct coalescence were three patterns observed between the two adjacent pre‐existing flaws. Finally, the mechanism of high temperature in alteration of the mechanical properties of sandstone was revealed through microobservations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.