Abstract

Based on the experiment, this paper focuses on studying flexural behavior of splicing concrete-filled glass fiber reinforced polymer (GFRP) tubular composite members connected with steel bars. The test results indicated the confinement effects of GFRP tubes on the concrete core in compression zone began to produce, when the load reached about 50%<i>P<sub>u</sub></i> (<i>P<sub>u</sub></i>-ultimate load), but the confinement effects in tensile zone was unobvious. In addition, the failure modes of composite members were influenced by the steel ratio of the joint. For splicing unreinforced composite members, the steel ratio more than 1.96% could satisfy the splicing requirements and the steel ratio 2.94% was ideal comparatively. For splicing reinforced specimen, the bearing capacity of specimen with 3.92% steel ratio was higher 21.4% than specimen with 2.94% steel ratio and the latter was higher 21.2% than the contrast non-splicing specimen, which indicated that the steel ratio more than 2.94% could satisfy the splicing requirements and both splicing ways used in the experiment were feasible. So, the optimal steel ratio 2.94% was suggested economically. The experimental results also indicated that the carrying capacity and ductility of splicing concrete-filled GFRP tubular composite members could be improved by setting internal longitudinal rebars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.