Abstract
This work focuses on investigating the characteristics of restricted horizontal jet fire caused by fuel leakage as a pipeline or tank fracture. The study aims to quantify the effect of the exit velocity and nozzle-facing wall distance on the flame height and width, as well as developing a new non-dimensional heat release rate, Q*n , to better characterize the flame geometry. The study conducted three nozzle-facing wall distances (0.05 m, 0.10 m, and 0.15 m) with varying fuel ejection speeds from 1.04 m/s to 6.25 m/s. Results show that the flame height and width increase with both the nozzle-facing wall distance and fuel ejection speed. The sidewall constrains the air entering into the fire plume, which pushes the flame closer to the sidewall. A new non-dimensional heat release rate, Q*n , was proposed on the basis of plate-nozzle distance, that the flame height and width fit well with the 1/4 and 2/5 power of Q*n , respectively. The global model was developed for flame size under multiple restrictions. The findings of this study are crucial in improving our understanding of the restricted horizontal jet fire accidents caused by fuel leakage and can aid in developing measures to minimize potential casualties and economic losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.