Abstract

A liquid carbon dioxide blasting experiment was carried out under free field conditions, alongside a liquid carbon dioxide rock breaking experiment, to investigate explosion pressure variation and rock breaking characteristics under liquid carbon dioxide blasting. The experimental results show that the internal and external explosion pressures of the liquid carbon dioxide fracturing devices all rapidly increased at first, before attenuating vibrantly after blasting. When the explosion pressure was raised, the internal explosion pressure increased first exponentially and then linearly, while the external explosion pressure increased exponentially throughout. The duration time of the blasting effect stage was about 45 ms. Under the combined effect of jet impingement and a gas wedge of high‐pressure carbon dioxide, the rock is subjected to tensile failure. The impact failure and the “gas wedge effect” of high‐pressure carbon dioxide play a key role in the rock breaking of liquid carbon dioxide blasting technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.