Abstract
The novel de-foulant hydrocyclone (DFH) with reflux device can effectively remove foulant from sewage and prevent the heat exchanger of the sewage source heat pump from clogging. However, the geometry of the reflux device has not been investigated in detail. The underflow pipe of the reflux device may interfere with the decontamination performance. In this study, the reflux device was converted into a reflux ejector, which caused a sucking effect on the underflow of the DFH. For further study, the effects of the suction angle, shape of the suction pipe, and motive flow rate on the separation performance were investigated. The ratio of the underflow rate to the overflow rate was used as the eject coefficient of the reflux ejector. Results showed that the suction effect was the best at suction angle of 30°; separation efficiency increased by 10% and the increase in energy consumption was less than 15 kPa compared with a suction angle of 90°. Simultaneously, the suction effect, separation efficiency, and energy consumption increased with the increase of the motive flow rate, and the maximum energy consumption does not exceed 25 kPa. This means that changing the reflux ejector geometry can optimize the decontamination performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.