Abstract

In this work, a coflowing microfluidic device was used to determine the influence of different mixed sodium dodecyl sulfate (SDS)-poly(ethylene glycol) (PEG) compound systems on dynamic interfacial tension and, by extension, corresponding emulsion droplet sizes. The aqueous solutions were used as the continuous phase in the microfluidic device, while octane was used as the organic dispersed phase. Combined SDS-PEG systems lower the interfacial tension more than either component can alone up to the critical aggregation concentration (CAC) of SDS. Octane droplet sizes produced in the microfluidic device using combined SDS-PEG systems were smaller than those produced using SDS alone, and a reduction in dynamic interfacial tension as determined by drop size followed a pattern similar to that observed in the static case (PEG4000 > PEG600 > PEG400 > PEG200 > PEG8000) with the exception of PEG8000. Finally, a previously formulated model relating interfacial tension to droplet size was used to estimate the dynamic interfacial tensions in the microfluidic device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.