Abstract

The main objective of this paper was to illuminate the effect of marine environmental condition on durability of reinforced concrete (RC)-corroded columns strengthened with carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) layers. Small-scale columns were prepared and corroded by an accelerated corrosion process. After strengthening, compressive strength tests were carried out on control and weathered specimens. In this research, a marine simulator was designed and constructed similar to the tidal zone of marine environment in south of Iran which was selected as a case study in this research. Mechanical properties of wrapped specimens were studied after placing them inside the simulator for 3000 hours. Marine environment decreased ultimate strength by 4.5% and 26.3% in CFRP and GFRP-wrapped columns, respectively. In some corroded-columns, strengthening was carried out after replacing damaged cover by self-compacted mortar. In this method, by confining with one layer of CFRP and GFRP, 4.2% and 22.4% reduction in ultimate strength was observed, respectively, after exposure. Furthermore, the elastic-brittle behavior has been verified in this retrofit method. Also results of tension tests revealed, the ultimate tensile strength was degraded by 2% and 28.8% in CFRP and GFRP sheets, respectively, after applying marine exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.