Abstract

The turbulent frictional drag of water can be reduced dramatically by adding small amounts of drag-reducing materials, such as polymers or surfactants. As a percentage drag reduction of 80% can easily be achieved, this technique is thought to be the most practical method of reducing turbulent frictional drag. In this work, a double pulse particle image velocimetry (PIV) system was used to clarify the spatial velocity distribution of surfactant solution flow in a two-dimensional channel. A type of cationic surfactant cetyltrimethyl ammonium chloride (C 16H 33N(CH 3) 3Cl) mixed with the same weight of counter-ion material NaSal (HOC 6H 4COONa) was used as a drag-reducing additive to water at a mass concentration of 40 ppm. Instantaneous velocity distribution taken by PIV was examined to clarify the effect of surfactant. It was found that the instantaneous velocity distribution taken in water flow exhibits penetration from the low-speed fluid region into the high-speed region, which is one of the important events of turbulence energy production and turbulent mixing. Although this structure is commonly observed in water flow, it was not found in drag-reducing flow under the same Reynolds number. The strong vorticity fluctuation near the wall also disappeared and the integral length scale in streamwise direction of turbulent fluctuation had a smaller value in surfactant solution flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.