Abstract

Bedrock has to be excavated before the construction of rock-socketed pile foundations for offshore wind power turbines, leading to the exposure of fresh and dry rocks to seawater. The pile-rock interface is partially separated under the long-term action of various cyclic loads during the operation stage of offshore wind turbines, and the infusion of seawater will further weaken the bedrock. To comprehensively investigate the deterioration of bedrocks by pressurized seawater, tests on point load strength and slake durability were carried out to study the long-term deterioration of mechanical properties of granite, sandstone, and tuff collected from an offshore wind power farm. The elastic P-wave velocity was measured to analyze the variation trend of P-wave velocity, the mechanism of which was revealed by means of Gassmann’s equation. The results of mechanical experiments indicate that granite is almost impervious to pressurized seawater, while the mechanical properties of sandstone and tuff are deteriorated by water, especially by the pressurized seawater. After 60 days of immersion in seawater at 0.5 MPa pressure, decreasing amplitude of point load strength and slake durability index for the sandstone specimens in seawater reaches 53.2% and 18.5%, respectively, and that for the tuff specimens is 14.6% and 1.52%, respectively. The elastic P-wave velocity of granite shows an upward trend with increasing immersion time in different environments, but there exists a different tendency between the P-wave velocity of sandstone and tuff specimens in water or seawater with normal pressure and that in seawater with 0.5 MPa pressure. The variation of P-wave velocity of different types of rocks is studied based on Gassmann’s equation that takes into account the change of saturation degree, porosity, and compressibility of the matrix material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.