Abstract
Flue gas recirculation has emerged as a promising low-NOx emission technology in advanced gas turbines, while the slower oxidation rate induced by the low oxygen content could potentially cause combustion instability. We conducted an experimental investigation in a single-nozzle swirl combustor to examine the impact of oxygen content, inlet flow rate as well as temperature on combustion instability under oxygen-lean conditions. The results show that reducing oxygen content from 23.3% to 21% leads to reduced amplitudes of pressure pulsation and exothermic pulsation, indicating improved combustion stability. However, further reduction in oxygen content to 18.6% causes a decrease in the combustion reaction rate, resulting in an increase in the amplitude of pressure pulsation. As the oxygen content drops to below 18.6%, the exothermic intensity decreases, which results in a decrease in the amplitude of pressure pulsation. Besides, under oxygen-lean conditions, increasing the inlet temperature is conducive to reducing the amplitude of pressure pulsation and enhancing combustion stability. Additionally, as the incoming flow rate increases from 7.4 to 9.9 m/s, the refined fuel atomization and improved uniformity of oil-gas mixing contributed to decreased pressure pulsation amplitude. Nonetheless, when the incoming flow rate further increases to 12 m/s, the amplitude of exothermic and pressure pulsation increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.