Abstract
Pre-chamber jet ignition is a key technology for future high-efficiency natural gas (NG) engines. It can achieve fast and stable combustion through excellent ignition performance. However, there are still some challenges, such as high combustion instability near the lean burn limit and the narrow engine operating range. Therefore, this paper investigates the combustion instability of a pre-chamber NG engine under ultra-diluted conditions by experimental method. At two engine loads, experiments are carried out with different jet ignition intensity schemes to study the effect of jet ignition intensity on the cyclic combustion variations. Then, the combustion instability characteristics of the pre-chamber NG engine are studied by cyclic variation analysis and phase space reconstruction. The results show that with the increase in the jet ignition intensity, the cyclic combustion variations decrease, and the cyclic variation coefficient of the indicated mean effective pressure decreases to below 2%. The lean burn limit of the pre-chamber natural gas engine is extended to an excess air ratio of 2.0. The operation instability of the pre-chamber NG engine is mainly due to cyclic variations in the ignition and combustion process. The nonlinear dynamic analysis shows that the combustion process in the lean burn pre-chamber NG engine behaves with chaotic characteristics under the operating conditions of low jet ignition intensity. As the jet ignition intensity increases, the combustion stability is improved and the cycle-to-cycle variations change from fairly deterministic to more stochastic behavior. The chaotic characteristics of the combustion process become weaker. In conclusion, it is of great importance to generate stable and high ignition intensity jets for reducing combustion instability and improving combustion efficiency in lean burn pre-chamber NG engines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.